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Abstract-The results of a linear stability analysis of a floating thin liquid layer with both sides open to air 
and interna:lly split in two halves by a permeable, heated or cooled divider are presented. For the case of 
deformable open surfaces and varying thermal and mechanical divider characteristics the results refer to 
steady and overstable modes of convection, hence leading to surface waves. Results are also provided 
about the role of the Marangoni effect in exciting antisymmetrical/flexural and symmetrical/squeezing 
modes of vibration of the thin liquid layer. 

1. INTRODUCTION 

The onset of Msrrangoni-Btnard convection in a 
heated or cooled layer with a free surface open to 
ambient air has been the subject of many inves- 
tigations, which have identified various mechanisms 
of instability [l-1.5]. However, if both surfaces of a 
floating layer are free and moreover deformable one 
may expect interaction of instability modes to occur 
at these two opposite surfaces, hence leading to new 
and genuine pherromena from the coupling. In par- 
ticular some of these effects are expected to be similar 
to those occurring with thin sheets of liquid [l&18]. 
The present paper contains a discussion of such a 
possibility. 

Thermal gradients in a floating layer may be caused 
by internal heating or cooling, induced by exo- or 
endothermal chemical reactions respectively. As in 
our previous publkation [19] (hereafter called I) we 
consider a layer with a heated or cooled permeable 
divider (partition)l. An obvious possibility for an 
experimental realization exists with low/microgravity 

tAuthor to whom correspondence should be addressed. 

conditions in a spacecraft or even on Earth where, 
with suitably thin sheets, the divider may be used as a 
grid catalyst for possible exo- or endothermic chemi- 
cal reactions. Thermal and hydrodynamic properties 
of permeable dividers and their influence on con- 
vective stability were treated earlier in theoretical and 
experimental studies on Btnard-Rayleigh buoyancy- 
driven convection [2&22]. An infinitely large hyd- 
rodynamic resistance of the divider reduces to the case 
of a two-layer system divided by a solid boundary. 
The opposite case of a heated divider with vanishingly 
small resistance may be realized by heating with a 
laser sheet. With respect to the results reported in I 
the new phenomena described here originate in the 
earlier-mentioned surface deformability and the 
eventual interaction between the two deformable sur- 
faces because of the mechanical and/or thermal com- 
munication allowed by the divider. In Section 2 we 
state and solve the problem for monotonic instability. 
In Section 3 we formulate the problem of overstability. 
Section 4 contains results for large divider resistances. 
Section 5 contains results for the opposite case of 
small divider resistances when there is interaction 
between the disturbances at both surfaces, hence lead- 
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NOMENCLATURE 

h half liquid layer depth 
k horizontal Fourier mode 
M Marangoni number M = y@h/qX 
Pr Prandtl number Pr = v/x 
Ca (inverse) capillary or crispation 

number Ca = a,h/qv 
P pressure 
T temperature 
TO temperature in the quiescent state 
V velocity vector 
u,, v1 horizontal and vertical velocity 

components 
V dimensionless amplitude of the vertical 

velocity component 
Ci coefficient of general solution 
t = tanh(k) 
x, z horizontal and vertical coordinates. 

Greek symbols 
0, 0 dimensionless temperature disturbance 

and dimensional reference temperature 

: 
liquid heat diffusivity 
Laplacian operator 

B surface tension ; equation of state : 
f? = a,-yT 

Y surface tension temperature 
coefficient 

rl dynamic viscosity 
V kinematic viscosity 
P density 
i dimensionless deviation of liquid 

surface from the quiescent state 
position 

5 amplitude of [ 
6 LX,, M, (oi,, oi,) dimensionless 

divider/partition resistances : 
generic, tangential/parallel and 
transverse/normal, respectively 
(quantities with hat ^ have 
dimension). 

ing to new regions of instability which extends the 
known results for isothermal thin liquid sheets to non- and 

isothermal layers [16-l 81. T,=@(l+z/h) at Z-CO (1) 

2. FORMULATION OF THE PROBLEM AND 

RESULTS FOR MONOTONIC INSTABILITY 

LEADING TO STATIONARY CONVECTION 

Let us consider a floating thin liquid layer 
(-h < z < h) with the two outer surfaces free, open 
to air (see Fig. 1). At z = 0, i.e. midway between the 
two open boundaries, we insert a pervious/permeable 
divider which on average is uniformly heated or 
cooled. Disregarding gravitational effects we shall 
consider the result of the Marangoni effect acting at 
the two opposite surface boundaries of the liquid 
layer. In the quiescent state the temperature nrofile is 
assumed to be initially linear 

T,,=@(l-z/h) at z>O 

with 0 defined by the power at the divider as a heat 
source or sink. We have set the zero reference value 
at the outer boundary of the liquid layer. Note that 
although we start with isothermal boundary con- 
ditions (b.c.) we assume that due to the outer ambi- 
ence air having a largely lower heat diffusivity than 
the liquid the actual b.c. for disturbances is adiabatic. 
Note also that we allow for surface deformation. The 
temperature of the divider 0 may be either positive 
or negative. 

Let T, p, u denote infinitesimal temperature, pres- 
sure and velocity disturbances respectively. They are 
governed by the linearized form of the Navier-Stokes, 
continuity and heat transport equations : 

au 
- = - ~vp+v*v, 
at 

divv = 0, g+aVT, = xAT 

Outer enclosure (2) 
Air where p is the density, v is the kinematic viscosity and 

Free boundary 
Liquid 

Divider .___.____. ________.__. 
Liquid 

Free boundary 

z=h 

z=o 

z = -h 

x is the heat diffusivity of the liquid. 
Assume that transverse displacements of the free 

liquid surfaces [ are small quantities, i.e. for a linear 
approximation the b.c. may be applied at z = + h. 
At the open boundaries with a linear temperature 
dependence of the surface tension Q = o,--yT, we 
assume that air plays no active role, hence Air 

Outer enclosure 

Fig. 1. A sketch of the geometry of the problem. 
z= fh: 

a=[ au, 
V, = ailat, p+ooaxz = 2pvaZ, 
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-y(g+!$g)= ,pv(-Z+$) (3) 

where [ is the deviation of either of the two layer 
surfaces from their level position at the quiescent state. 
The disturbed heat flux at both free surfaces is 
assumed such that 

i3T/dz(z = & h) = 0 (4) 

hence there are adiabatic conditions leading to van- 
ishing heat flux diisturbances. 

At the permeable divider, i.e. at level z = 0 we 
assume continuity of the velocity : 

Solutions of equations (8)-( 10) naturally separate 
into even {v( -z) = v(z), Q-z) = -B(z)} and odd 
{v(-z) = -v(z), f3(-z) = f?(z)} modes. It is con- 
venient to construct the solution for the region 
0 < z < 1 and to suitably re-define the b.c. at z = O+. 
We obtain : 

(i) for the even solution at z = O+ : 

c- - v:, - 0.x 3 vz + =u- z (5) 

where the upper indices ‘ + ’ and ‘ - ’ denote values 
above and below the divider respectively. Further- 
more, we assume that the through-flow obeys Stokes 
law, i.e. the tangential velocity component is pro- 
portional to the sum of the tangential stresses on either 
side of the partition, while the normal component is 
proportional to the pressure jump across it 

v, = oi;‘pv(av:ja.~-av;/az), v, = -oi;l(p+ -p-j 

(6) 

li = 0, v”‘+0.5k2u,v = 0, 0 = 0 (11) 

(ii) for the odd solution at z = O+ : 

v = 0, II”-osa,v = 0, 8’ = 0. (12) 

Hence the even solution depends only on the trans- 
verse resistance CI,, while the odd mode depends on 
the tangential one E,. 

The general solution of both problems can be writ- 
ten in the region z > 0 as 

v = C, sinh kz + C, cash kz + C,z cash kz + C,z sinh kz 

6 = C5 sinh kz + C6 cash kz+ (C4/4k2 - CJ2k) 

zsinhkz+ (C,/4k2 - C,/2k)zcoshkz 

where 6, and oi, are phenomenological parameters that 
define the tangential/parallel and normal/transverse 
hydrodynamic divider resistances. Thermal con- 
ditions at the dh.der are such that disturbances of 
temperature and heat flux are continuous : 

T+ = T-, a7-+jaz = ar-jat. (7) 

For a dimensionless description of the problem we 
use suitable units : distance, h ; time, h*/v ; velocity, 
x/h; divider resistances, pv/h; and temperature, 0. 
Then with these new ‘scales’, using the Fourier 
decomposition 

- (C, sinh kz+ C, cash kz)z2/4k (13) 

where C, are constants determined by the boundary 
conditions. 

For the even solution the solvability condition of 
the system (9), (11) with (13) yields the neutral stab- 
ility curve, i.e. provides the Marangoni number as a 
function of wave number and the dimensionless 
groups of the problem. We have 

M = [32k2 + 8cr,(k* tZ + kt - k2)]/[4(k2 - 2kt 

+t2-k2t2+2kt3)+a,(t3/k-k*+k*t*) 

v, = v(z)exp(-It+ikx), 

T= B(z)exp(-lt-tikx), 

{ = cexp(-it+ikx) 

where primes (‘) denote z-derivatives. Restricting con- 
sideration to steady modes of instability, we have 

+(CaPr)-‘8k2(t2-1)(4-a,)] (14) 

with t = tanh k. Clearly for a plane liquid surface (Ca 
Pr + co) equation (14) reduces to equation (11) of 
Ref. [l]. 

Asymptotically we have : 

l(a) k-to: 

V ““-2k2v”-f-k4V = 0, 8”-k20kV = 0 (8) M = [480+ 80a,k2]/[60k2 + E,k4 
with b.c. 

z= +1: 
+ 120(CuPr)-‘(cc,-4+4k2)] (15) 

v = 0, d”-3k*v’ T CaPrk+‘{ = 0, 

v”+k2v+/z2M(+0-l) = 0, 8’ = 0 (9) 

z=o: 

u+ = u- v+’ = v-l v+~~~_v--l~’ = _-cI k*v ” 3 

v+~~_v-~~ =: GI vf~+ = *- T 0+x = 0-1 (10) 

Five dimensionless groups have been introduced : 
the (inverse) capillary or crispation number, 

and for CL, > 4 the onset of instability occurs at M > 0 
(heated divider). At k = 0 the Marangoni number is 
equal to 4Ca Pr/(cc, -4). Thus for CI, < 4 there is a 
region of small k where instability exists at M < 0 
(cooled divider or heated ambient air). For large 
values of the combination Ca Pr the region is 0 < 
k* < 2(4-u,)/Cu Pr with M, = -4Ca Pr/(4-a,). 

1 (b) k -S co : M = 8k*, i.e. the instability appears only 
for a heated divider. 

Typical neutral stability curves for the even mode 

Cu = a,,h/pv*, the Prandtl number, Pr = v/x, the 
Marangoni number, M = yOh/pvX, u, = &h/pv and 
01, = &h/pv. 
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k 

Fig. 2. Neutral curves for even monotonic disturbances at 
large divider resistances and different values of the com- 
bination Ca Pr: l--cc, = co, Ca Pr = cc ; 2--00, 10’; ~--CO, 

103; G-100, co ; 5-100, 103; 6100, 100. 

in the case a, > 4 are shown in Fig. 2. Curve 1 cor- 
responds to an impervious divider (c(, + co) and an 
undeformable plane surface layer (Ca = co). The 
curve has only one minimum at k, = 2.0 with M, = 80 
(as in Ref. [ 11). For a deformable surface (finite values 
of Ca) and an impervious divider the lowest threshold 
instability appears at k = 0 (curves 2 and 3). For finite 
values of the resistance the latter instability vanishes 
and the critical Marangoni number increases as tl, is 
decreased. In some range of c(, and Ca Pr the neutral 
curves possess two minima (e.g. curve 5). Further 
decreasing the resistance makes the disturbances with 
finite wave number become the most dangerous. For 
CI, = 4 the vertical axis is the asymptote of the neutral 
curve at k = 0. The inset in Fig. 2 illustrates quali- 
tatively the shape of critical disturbances and the dis- 
tortion pattern for the free surfaces. It is readily seen 
that bulging of the fluid surface is caused by the fluid 
inflow from the regions with higher surface tem- 
peratures. The index ‘+’ denotes the regions of the 
surface in which the Marangoni effect sustains the 
disturbances. In the valleys, the heated fluid is carried 
by the velocity disturbance to the surface, hence Pear- 
son’s [l] result for instability of a layer with a flat 
open surface. Mismatch in the slope of the layer sur- 
face with respect to the isotherms of the basic tem- 
perature field provides the second mechanism sus- 
taining disturbances [13]. In contrast to Pearson’s this 
mechanism operates efficiently in the region of long 
waves and for the case with an impervious divider, 
contributes to the onset of the lowest threshold insta- 
bility at k = 0. 

For CL, < 4 the asymptote is the straight line 
k, E [2(4-cc,)/Cu Pr]“’ and a new instability range 
appears when the layer is heated from outside or there 
is a cooled divider. Typical neutral stability curves for 
this case are shown in Fig. 3. Curve 1 represents the 
case of a layer with undeformable boundaries and a 
permeable divider. As in the case TV, = co this curve is 

- + 
Hot 
Cold 

+ - Hot 

I I I 
1.0 1.5 2.0 2.5 

k 

Fig. 3. Neutral curves for even monotonic disturbances at 
low divider resistances and different values of Ca Pr : l- 

d(, = 0, Ca Pr = 00 ; 2--O, 100; 3-1, 100. 

asymptotic to the vertical axis at k = 0. Curves 2 and 
3 (Cu Pr = 100, cz, = 0 and 1 respectively) have dis- 
continuities at k = k, and illustrate the presence of 
instability for both ways of heating. 

Instability in the short-wavelength region is related 
to Pearson’s mechanism [l] and occurs with a heated 
divider. A typical flow pattern is depicted in the upper 
inset of Fig. 3. Contrary to the cases displayed in Fig. 
2, distortion of the fluid surface in the layer with the 
permeable divider should be attributed to transverse 
flows. The Marangoni effect at the inclined section of 
the free surface slows down the initiated motion (this 
point is marked by index ‘ - ‘) and suppresses it in the 
region of long waves. However, with the layer heated 
from outside this mechanism leads to a long-wave- 
length instability, as shown at the bottom of Fig. 3. 
Here, as the depicted flow pattern shows, Pearson’s 
mechanism prevents the growth of disturbances. 
Heating from outside or with a cooled divider, the 
disturbances with k = 0 are the most dangerous. Since 
a new mechanism of instability makes itself evident 
only at low divider resistances and within the long- 
wavelength range, it seems to be related to the inter- 
action of disturbances occurring at the two opposite 
free surfaces. 

For the odd solutions the solvability condition 
yields 

M = 8[4k2t3 +cz,(t3k2 +t’k-k2t)]/[4(t3 -kZt+k2t3) 

+cc,(t2/k-2t+2t3+k-kt2-k2t+kZt3) 

+8k’(CuPr)-‘(l-t2)(4+cc,)] (16) 

which asymptotically provides : 
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0 
0 0.5 1.0 1.5 2.0 

k 

Fig. 4. Neutral curves for odd monotonic disturbances at 
different values of r, and Ca Pr: l--cc, = co, Cu Pr = co ; 

2-w, 104; 3-03, 102; 4--o, a,; 5--o, 104; a, lo*. 

2(a) k +O: 

M = [288(1 -k2) + 16a,(3-4k2)]/[12(1 -2k*) 

+a,(l-4k2)+24(k2CuPr)-’ 

(3-4k2)(4i-a,)]. 

2(b) k + cc : 

M x 8k*. (17) 

Instability appears only when we have a heated 
divider. Typical neutral curves for the odd mode are 
shown in Fig. 4. For undeformable surfaces (Cu = co) 
the instability occurs with k = 0 at finite critical Mar- 
angoni numbers (curves 1,4). With a deformable sur- 
face the odd mode always yields the lowest instability 
threshold (M = 0 at k = 0). This is typical of mic- 
rogravity conditions. Obviously with finite gravi- 
tational acceleration our b.c. [in particular equation 
(3)] need to be augmented with the hydrostatic con- 
tribution and as buoyancy may play a non-negligible 
role due care must be given to the possible Rayleigh- 
Taylor instability of the lower surface. 

The inset of Fig. 4 depicts the convective flow in the 
case of a solid boundary (the upper inset) and a divider 
with tl, = 0. The solid divider suppresses fluid motion 
in the middle of lthe layer and moves the convective 
rolls towards the free surface. This provides stability 
of the layer to disturbances of finite k as the divider 
resistance is increased. As can be seen from the figure, 
the convective flow is sustained by the two earlier 
mentioned instability mechanisms. The lowest thr- 
eshold for instability is related to motion generated at 
the part of the surface not aligned with the isotherms 
of the basic temperature field. 

21. OVERSTABILITY 

Until now we have discussed the possibility of insta- 
bility in the form of stationary convection. Now we 
turn our attention to oscillatory modes of convection. 
The amplitudes of oscillatory disturbances v(z), e(z) 
and 5 are governed by the equations 

V ““-2k2v”+k4v+l(v”-k*v) = 0 (1W 

8”-k*efv+lPre = 0 (18b) 

with b.c. on the free surfaces 

z = +l: ICv”‘-3k2v’)+1*v’+Cak4v = 0 

(1W 

I(v”+k2v)~M~k20+k2MPr-‘v = 0, 

B’=O, t= -Prv/i (19b) 

and bc. (11) at the divider. We consider neutral dis- 
turbances with i = iw, where the non-vanishing o 
provides the expected frequency of overstable modes. 

The solutions of equations (18) with b.c. (19) are 
also separated into even and odd modes, with b.c. 
at z=O+, (ll), (12). For both modes, the general 
solution, when Pr # 0 and Pr # 1, can be written for 
the region z > 0 as 

v = C1 exp(kz)+C,exp(-kz) 

+ C3 exp (vz) + C4 exp ( - vz) 

0 = - (C, exp (kz) + C2 exp (- kz))/ioPr 

- (C, exp (vz) + C4 exp (- vz))/iw(Pr- 1) 

+ CS exp (Pz) + C6 exp ( - Bz), (20) 

where v = (k* -iw)“‘, /I = (k* -iwPr)‘/*. The solv- 
ability condition of the system for the coefficients C, 
defines the overstable neutral curves, hence providing 
the corresponding frequency w and Marangoni 
number. We have 

Im (A1 (w)/A(o)) = 0 (21) 

while M = Re(A,/A), where A, and A for the even 
mode are 

A+ A- B+ B- 0 0 
c+ c- D+ D- 0 0 
E+ E- F+ F- G+ G- 

A,,A = det Z+ 
I- J+ .Z- 0 0 

I K-I- K- L+ L- M+ M- 
N+ N- 0+ 0- P+ P- 

For A, and even mode 

A+ = &k, B= +v, Cf = +k3+0.5k2c(,, 

D+ = fv3+0.5k2u,, E+ = l/ioPr, 

Ff = l/iw(Pr-l), Gf = -1, 

ZIfI = (fm2kf2k3io--Cuk4)exp(fk), 

J+ = (fW2v+iav(3k2-v*)-Cuk4)exp(*v), 

K+ = 2iwk’ exp (f k), 

Lf =iw(v*+k’)exp(+v), 

Mf =O, Nf = Tkexp(fk)/B,, 

Of = fvexp(&v)/B,, Prf: = +/?exp(+p). 

For A the same elements of the determinant 
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(b) 

Fig. 5. Neutral curves (a) and frequencies (b) of neutral 
disturbances for a solid divider and Pr = 0.01, Ca = 10“. The 
even and odd numbers refer, respectively, to even and odd 
disturbances. The dotted lines depict overstable neutral 

curves. 

must be replaced by Kf = 0, Lf = k*(l/Pr-l/ 
(Pr- l))exp( + v), Mf = iuk’exp( &-/I). 

For the odd mode some elements of A, and A must 
be replaced by e.g. A+ = Bf = 1, C+ = k* 
0.5k3a,, Df = v2Tk2va,, E+ = +k/iwPr, Ff = 
+v/iw(Pr-l), Gf = 7b. 

4. OSCILLATORY INSTABILITY IN THE CASE OF 
AN IMPERVIOUS DIVIDER 

An impervious divider separates the layer into two 
halves with vanishing hydrodynamic interaction. 
Mathematically the problem for the even mode is 
equivalent to that of a plane layer with a solid iso- 
thermal support, while the odd mode problem reduces 
to the case of a solid boundary with zero heat flux for 
disturbances. The difference in the behavior of even 
and odd disturbances should be most evident in the 
long wavelength region, whereas in the region of short 
waves it is negligible. The onset of thermocapillary 
instability in a plane layer with one free boundary [3, 
5-7, 121 can be easily observed using small Prandtl 
number liquids. For illustration let us consider the 
case of a solid divider for a layer with fixed (inverse) 
capillary number Cu = 104, which is typical for layers 
of melted semiconductors. 

Variations of the critical Marangoni number and 
the frequency of (neutral) oscillations with the wave 
number k are plotted in Fig. 5 for Pr = 0.01. The solid 
line at the top of the figure provides the neutral curve 

for monotonic disturbances discussed in Section 2. At 
given parameter values the curves describing even and 
odd disturbances coincide on the scale used in our 
plot. 

The neutral curves for oscillatory disturbances are 
depicted by broken lines. The even and odd numbers 
of curves correspond, respectively, to even and odd 
modes of disturbances. In the region of long waves 
(small k) oscillatory instability occurs under external 
heating of the free surface or with a cooled divider. 
The dispersion relation of these waves differs sig- 
nificantly from the Laplace-Kelvin law (w’ = Ca 
k%anhk) for capillary waves in a plane layer of iso- 
thermal fluid (dashed-broken line in the figure). The 
frequency of oscillation of the observed waves remains 
finite at low k. These waves are sustained by the out- 
ward-directed temperature gradient of the fluid. In the 
following, these waves will be called ‘thermocapillary’ 
waves. 

The onset of thermocapillary waves in the field of 
gravity was described in Takashima’s work [3, see 
also 5-71 for liquid layers with one solid isothermal 
boundary. As discussed earlier, the discrepancy of 
neutral curves and frequencies for solutions with 
different symmetry is caused by disparity of tempera- 
ture conditions imposed at the divider. The most 
dangerous is the even mode (curve 4), involving non- 
zero heat flux through the divider. In the region of 
short waves (k > 12) the oscillations are induced by 
internal heating of the fluid (curve 5 in Fig. 5). The 
existence of such waves in the fluid layer with a solid 
boundary was first reported in [12] and later in [15 ; 
see also 7, 231. The dispersion relation for the waves 
at the lower branch is close to w* = Cu k3. We have 
the excitation of capillary waves by the Marangoni 
thermocapillary effect. Because of their short length, 
these waves are localized close to the surface and are 
insensitive to the b.c. at the divider. Referring to Fig. 
5, the frequency at the upper branch of the neutral 
curve 5 decreases with increasing wave number and 
goes to zero at k = 26 where the neutral curve of the 
oscillatory instability merges with the neutral curve 
for monotonic disturbances (curves 1,2). With 
increase of the Prandtl number, i.e. increased con- 
tribution of viscous dissipation or increased life-time 
of thermal disturbances, the region of short capillary 
waves is shifted towards still shorter waves. Apart 
from this, one may observe generation of capillary 
waves in the intermediate range of the wave numbers 
(k - 1) under external heating of the fluid surface. 
This region is adjacent to the region of the long-wave- 
length thermo-capillary instability. 

Figure 6 gives the neutral curves and frequencies of 
neutral oscillations at Pr = 0.1 where the rep- 
resentation of curves is identical to that of Fig. 5. 
The neutral curves and frequencies of even and odd 
disturbances as depicted in Figs. 5 and 6 for k > 1 are 
essentially the same. Thus in the layer with a solid 
impervious divider, with Pr = 0.1, we may distinguish 
between three regions of excitable waves: ther- 
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Fig. 6. Neutral curves (a) and frequencies (b) of neutral 
disturbances for a solid divider and Pr = 0.1, Ca = 104. The 
even and odd numbers refer, respectively, to even and odd 
disturbances. The dotted lines are taken for neutral curves 

of Ioscillatory disturbances. 

mocapillary waves (0 < k < 0.5) and capillary waves 
(0.5 < k < 6.3), initiated by heating from outside, say, 
and short capillary waves (k > 276) sustained by heat- 
ing at the divider of the liquid layer. The difference 
between the layer with a solid divider and that with a 
solid continuous boundary becomes evident only in 
the region of long waves, in which one may expect the 
appearance of waves described by various thermal 
conditions on the solid boundary. 

5. OSCILLATORY INSTABILITY IN THE CASE OF 

A TFIANSPARENT DIVIDER 

Let us now turn our attention to the case when the 
divider exerts none or negligible mechanical action on 
the fluid motion. Hence the divider serves only as a 
heat source or heat sink. The former situation may 
occur when heating the fluid with a thin laser sheet or 
it may simply be considered as a simplified model of a 
more complicated mathematical problem on thermo- 
convective instability caused by internal heat sources. 

In the region of short waves (k > 10) the situation 
is very much like the case of excited surface waves 
with a solid divider, since such disturbances really do 
not reach the divider. 

In the region of intermediate and long waves the 
waves generated on opposite layer surfaces are 
expected to undergo strong hydrodynamic inter- 
action. For a thin isothermal layer, waves may be 
classified into two groups [16-181: anti- 
symmetrical/flexural waves (even mode) with dis- 
persion relation w2 = Ca k3c tanhk and sym- 

-0 0.5 1.0 1.5 2.0 

(b) G 

Fig. 7. Neutral curves (a) and frequencies (b) of neutral 
disturbances for a ‘transparent’ divider (a, = 0 and a, = 0). 
Symbols and parameters are identical to those used in 

Fig. 5. 

metrical/squeezing waves (odd mode) with dispersion 
relation W* = Ca k3 tanhk. Instability of the non-iso- 
thermal fluid layer with respect to oscillatory dis- 
turbances involving dispersion relations, closely 
approximating the earlier mentioned Laplace-Kelvin 
law, should be treated as capillary waves genuinely 
excited by the Marangoni effect. 

The neutral curves for disturbances in the layer with 
such ‘transparent’ partition are plotted in Fig. 7 for 
Pr = 0.01 and Ca = 104. The curves describing even 
and odd disturbances are labelled, respectively, by the 
even and odd numbers. The solid lines at the top of 
the figure represent the neutral curve for monotonic 
disturbances. As already stated the neutral curve for 
even disturbances at low values of the divider resist- 
ance has two branches corresponding to a long-wave- 
length region at negative Marangoni numbers and to 
a short-wavelength region at positive values respec- 
tively. These curves are labelled with the number 2. 

The even and odd thermocapillary waves (curves 
3,4) with non-zero frequency at k = 0 appear in the 
region of long waves at sufficiently large negative Mar- 
angoni numbers (external heating). On the other 
hand, this region also involves the lowest threshold 
instability with respect to capillary waves (curves 5,6). 
The dispersion curves for these waves are actually 
consistent with the curves for isothermal capillary 
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Fig. 8. Neutral curves (a) and frequencies (b) of neutral 
disturbances for a ‘transparent’ divider (a, = 0 and cz, = 0). 
Pr = 0.01, Ca = 105. Symbols are identical to those of 

Fig. 5. 

waves (dash-dotted lines). Note that the symmetrical 
wave (curve 5) occurs in a rather narrow range of 
Marangoni numbers, when the fluid layer is heated 
from outside or there is a cooled divider. In contrast, 
the antisymmetrical waves are observed at all positive 
Marangoni numbers (above the neutral curve) and 
nearly the same wavenumbers k, corresponding to the 
onset of monotonic instability with respect to the even 
mode under external heating. The upper branch of 
curve 6 ends at the curve of monotonic instability, 
labelled 2. 

With a fluid layer heated from outside there is also 
a region of antisymmetrical capillary waves with wave 
number k - 1, which is limited by the Marangoni 
and wave numbers (the inner region of curve 8). At 
Pr = 0.01 this region exists only at fairly large 
(inverse) Capillary numbers (Ca > 8 x 103) i.e. at rela- 
tively small surface deformation. As the (inverse) 
capillary number increases the region of excitable 
capillary waves extends as seen in Fig. 8, which shows 
neutral curves for Cu = 10’. Note that the change in 
the scale relative to the previous figures allows all the 
neutral curves to be accommodated in a single figure. 

It should be emphasized that at Pr = 0.01 the capil- 
lary and thermocapillary waves exist in separate 
regions. The situation is different with large Prandtl 
numbers. Neutral curves for the fluid with Pr = 0.1 
and low divider resistance are displayed in Fig. 9. Here 
a radically new feature can be observed, namely the 
appearance of a wide region of sustained capillary 

Fig. 9. Neutral curves (a) and frequencies (b) of neutral 
disturbances for a ‘transparent’ divider (a, = 0 and tl, = 0). 
Pr = 0.1, Ca = 105. Symbols are identical to those of Fig. 5. 

waves in the intermediate wave number range when 
heating the layer from outside or when there is a 
cooled divider (M < 0). This region transfers con- 
stantly to the region of long thermocapillary waves. 
Note however, that the lowest threshold instability 
with respect to long capillary waves governed by the 
Laplace-Kelvin relation is still valid. 

6. CONCLUSIONS 

In the present work we have analysed various 
aspects of the Marangoni instability of a floating 
liquid layer with two free surfaces and a permeable 
divider located in the mid-plane that serves as a heat 
source or heat sink. The available temperature dis- 
tribution endows both fluid surfaces with equal possi- 
bilities for instability, hence the interaction of dis- 
turbances generated at the two opposite layer surfaces. 
For monotonic disturbances the parameters are the 
Marangoni number and the combination product of 
Prandtl and (inverse) capillary numbers, whereas for 
oscillatory disturbances these three parameters appear 
separately. Symmetry in the problem reduces all 
disturbances to even/flexural/antisymmetrical and 
odd/squeezing/symmetrical disturbances. 

The stability analysis of the layer for monotonic 
disturbances carried out in Section 2 shows that for a 
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high-resistance divider the situation is similar to the 
case with a solid boundary. For even disturbances the 
boundary conditions at the divider are identical to 
those for an isothermal solid surface, whereas for odd 
disturbances the heat flux is fixed. Even disturbances 
show two well-defined instability mechanisms : Pear- 
son’s mechanism. [l] with wavenumber k N 2 and a 
long-wavelength instability related to the existence of 
the temperature gradient along the surface because 
of its bending, and resulting in the lowest instability 
threshold at finite (inverse) capillary number and 
infinite divider &stance. For odd disturbances the 
second mechanism at finite (inverse) capillary num- 
bers also leads t’o the lowest long-wavelength insta- 
bility threshold. 

The case of a low-resistance divider, characterized 
by a strong hydrodynamic interaction of the long- 
wavelength disturbances at both sides of the divider, 
may be of considerable interest when dealing with the 
onset of long-wavelength monotonic instability for 
symmetrical waves when the divider is used as a cool- 
ing device. This instability exists only for tl, < 4. 

For oscillatory disturbances, leading to surface 
waves, the case of a permeable divider also shows the 
essential difference with the case of a solid continuous 
boundary. The latter is equivalent to two stability 
problems for a plane layer with the solid continuous 
boundary subject to opposite limiting thermal con- 
ditions. The oscillations were examined in the region 
of small Prandtl numbers and large (inverse) capillary 
numbers, when the waves along the fluid surface have 
a relatively small viscous dissipation. Comparison of 
the dispersion relations with that for the capillary 
waves in isothermal fluid allows us to distinguish 
between two types of oscillatory instability in the non- 
isothermal case: capillary waves sustained by the 
Marangoni effect and long thermocapillary waves 
with non-vanishing frequency at k + 0. The former, 
thermocapillary waves always occur for fluid layers 
heated from outside, while capillary waves may be 
sustained with either way of heating. In all cases the 
capillary waves a:ppear at sufficiently large values of k 
when there is a heated divider. For a divider of high 
resistance, as well as in the layer with a solid boundary, 
the region of small k is found to be stable to capillary 
waves. For a permeable divider the very long capillary 
waves with k -+ 0 correspond to the lowest threshold 
instability of the layer both when heating from outside 
and inside, i.e. for both negative and positive Mar- 
angoni numbers respectively. 
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